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Quantum coherent optical phase modulation in an
ultrafast transmission electron microscope
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Coherent manipulation of quantum systems with light is expected
to be a cornerstone of future information and communication
technology, including quantum computation and cryptography'.
The transfer of an optical phase onto a quantum wavefunction is a
defining aspect of coherent interactions and forms the basis of
quantum state preparation, synchronization and metrology.
Light-phase-modulated electron states near atoms and molecules
are essential for the techniques of attosecond science, including the
generation of extreme-ultraviolet pulses and orbital tomo-
graphy>’. In contrast, the quantum-coherent phase-modulation
of energetic free-electron beams has not been demonstrated,
although it promises direct access to ultrafast imaging and spec-
troscopy with tailored electron pulses on the attosecond scale. Here
we demonstrate the coherent quantum state manipulation of free-
electron populations in an electron microscope beam. We employ
the interaction of ultrashort electron pulses with optical near-
fields* to induce Rabi oscillations in the populations of electron
momentum states, observed as a function of the optical driving
field. Excellent agreement with the scaling of an equal-Rabi multi-
level quantum ladder is obtained'’, representing the observation of
a light-driven ‘quantum walk’ coherently reshaping electron den-
sity in momentum space''. We note that, after the interaction, the
optically generated superposition of momentum states evolves into
a train of attosecond electron pulses. Our results reveal the poten-
tial of quantum control for the precision structuring of electron
densities, with possible applications ranging from ultrafast elec-
tron spectroscopy and microscopy to accelerator science and free-
electron lasers.

The interaction of propagating light with confined electrons in
atoms, molecules and solids is omnipresent, but the opposite case—
the coupling of free electrons to localized optical fields—is not a nat-
urally occurring phenomenon. Nonetheless, in both cases, the prin-
ciple of confinement allows for optical transitions in otherwise
mismatched electron and photon dispersion relations'. Controlling
free-electron propagation with low-frequency electromagnetic fields
in resonator geometries is an integral aspect of accelerator science'®. At
optical frequencies, however, particular challenges arise from the
requirements of very controlled electron beams and tailored nano-
structure near-fields. Increasing efforts are currently devoted to optic-
ally drive electron trajectories on the nanoscale—for example, for
applications in attosecond science and lightwave electronics'*"°.

Some of the elementary phenomena involved in coupling free elec-
trons to light were described more than half a century ago: in the
Kapitza-Dirac effect®®?', electrons are elastically scattered off a stand-
ing light wave, whereas the Smith-Purcell effect and its variants®**>**
treat the inelastic interaction of free electrons with confined modes
close to a grating. Recently, ultrafast electron microscopy schemes
showed that the kinetic energy distribution of short electron pulses
develops a series of photon sidebands after passage through an intense
optical near-field* . This approach, termed photon-induced near-field
electron microscopy (PINEM)* has been employed in the temporal
characterization of ultrashort electron pulses (see Methods) and as a

contrast mechanism in electron microscopy***. Beyond such
advanced applications, the underlying interaction should allow for
the preparation of coherent electronic superposition states and a
phase-controlled harnessing of quantum coherence for the temporal
shaping of electron bunches.

Here we report the coherent phase-modulation of free-electron
states in a nano-optical field. We experimentally induce multilevel
Rabi oscillations in the form of a quantum walk in momentum space,
obtaining excellent agreement with theoretical predictions by Garcia
de Abajo et al® and Park et al® of this interaction. Moreover, we
demonstrate theoretically that dispersive propagation transforms the
optically modulated electron wavepacket into a train of attosecond
peaks. In the experimental scenario displayed in Fig. 1, femtosecond
electron pulses are generated by nonlinear photoemission from a
nanoscale cathode**?®. After collimation and acceleration to an energy
of 120 keV, the magnetic lens system of a transmission electron micro-
scope focuses the electron pulses to a spot diameter of 15 nm in close
vicinity to an optically excited conical gold tip. The localization of the
nanostructure’s near-field mediates the optical interaction with the
free electrons. This leads to the creation of multiple spectral sidebands,
each corresponding to the absorption/emission of an integer number
of photons (spectrum in Fig. 1e)*°. Detailed information about the
interaction process is encoded in the number of populated sidebands
and their individual amplitudes. For example, the maximum electron
energy gain in the optical near field is a quantitative measure of the
local transition amplitude, which can be imaged by raster scanning the
electron focus (Fig. 1b).

Microscopically, the electron-light interaction studied here consti-
tutes an optical phase-modulation of the electron wavefunction®.
Expressed as a quantum mechanical multilevel system, electron energy
levels spaced by the photon energy 7i are coupled in the optical near-
field (level diagram, Fig. 1d). Previous experiments studying this inter-
action found a partial reduction of the initial electronic state popu-
lation and a spectral broadening with distributions gradually decaying
towards large photon orders******. Such observations evidence tran-
sitions dominated by sequential multilevel excitation (processes of
type I in Fig. 1d). However, it is assumed that the coupling process
is coherent in nature>’, which implies that quantum features arising
from multipath interference (type II) should also be observable.

In order to identify such phenomena, we require an interaction of
uniform strength with the entire electron ensemble in the pulse®. This
scenario is achieved by using a spatially narrow probing beam and, in
contrast to earlier works, an optical near-field excitation which has a
uniform amplitude during the transit of the electron pulse envelope
(see Methods).

Under these conditions, we find experimentally that the population
of photon sidebands exhibits a pronounced oscillatory behaviour cor-
responding to multilevel Rabi oscillations, as demonstrated in Fig. 2 for
electron spectra at a fixed position near the tip shaft. A colour-coded
map (Fig. 2a) displays the evolution of the interaction-induced kinetic
energy distribution with growing incident field strength. With increas-
ing driving field, we observe a linear spreading in the range of
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Figure 1 | Schematic and principles of coherent inelastic electron scattering
by optical near-fields. a, Experimental scheme. Ultrashort electron pulses
generated by nanotip photoemission are accelerated and focused to a beam
that interacts with the optical near-field of a nanostructure, phase-modulating
the electron pulse and exchanging energy in integer multiples of the photon
energy. b, Raster-scanned image of the energy cutoff in the inelastic electron
scattering spectra, representing the local transition amplitude (see text).

¢, Incident kinetic energy spectrum (full-width at half-maximum, 0.7 eV)
centred at E, = 120keV. d, Energy level diagram of ladder states with spacing
o coupled to the initial state at E,. Arrows indicate sequential multistate
population transfer (type I) and interfering quantum paths (type II) leading to
multilevel Rabi oscillations. e, Example of kinetic energy spectrum after the
near-field interaction, exhibiting a spectral comb with multiple sidebands
separated by the photon energy and modulated in occupation.

populated sidebands, together with strong oscillations in the central
part of the spectra. Specifically, the experimental spectra exhibit a
nearly complete extinction of the initial state occupation and its pro-
nounced recurrence at incident fields of 0.023 Vnm ™' (red line) and
0.040 Vnm ™! (green line), respectively (Fig. 2¢). Quantitative analysis
of the field-dependent spectral evolution (Fig. 2b) shows the oscilla-
tions of the initial state population (‘zero loss peak’) and those of
different electronic sidebands. These modulations directly evidence
multilevel Rabi oscillations and thereby a quantum coherent manip-
ulation of the respective level amplitudes, which, as a function of field
strength, traces out the evolution of an elementary quantum walk''.
Recently, near-field-induced free-electron transitions, as observed
here, were theoretically treated by solving the time-dependent
Schrédinger equation®® (compare our results to figure 2 in ref. 5,
which depicts population oscillations simulated as a function of intens-
ity). Yielding equivalent theoretical results, we present a compact
description using raising and lowering operators acting on the
electronic state |Eg) of the system at an initial energy Ey. As demon-
strated in the Methods section, the action of the near-field can be
described by a scattering matrix S = exp[g*a — ga'] with a dimension-
less near-field coupling constant g proportional to the field strength
and the transition matrix element. One may notice that S takes the
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Figure 2 | Quantum coherent manipulation of electron energy
distributions. a, Experimental electron energy distributions as a function of
the incident optical field strength (left) and theoretical prediction in terms of
Nth-order Bessel functions (right). b, Occupation probabilities (open circles) of
the Nth-order spectral sidebands shown in a, adding contributions from = |N].
Solid lines, Nth-order Bessel functions. Inset, double-logarithmic plot of the
sideband populations near onset. Solid lines with slope 2N are shown for
comparison. ¢, Electron energy spectra at incident optical fields of 0, 0.023,
0.040, 0.053 and 0.068 Vnm ™' (bottom to top). Spectra shown in a and ¢ are
normalized to their respective maxima.
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form of a displacement operator generating coherent states in the
harmonic oscillator model. In a variation of this scenario, we use a’
and a as commuting raising and lowering operators, connecting free-
electron states separated by the photon energy, that is, a'|Eo) =
|Eo + hiw) and a|Ey) = |Ey — hw). The scattering matrix represents
the Hamiltonian evolution of the system as a unitary operation on
the initial electron wavefunction |Ep), which leaves the electron in a
superposition of ladder states |Ey == Nfiw), with N a natural number.

In the limit of small optical driving fields, the scattering matrix is
dominated by sequential multiphoton terms, for example, 7 (gaT)N ,
corresponding to type I transitions (Fig. 1d). The occurrence of inter-
fering quantum paths at increased optical field strength (type II paths)
becomes apparent by considering higher order terms in the Taylor
expansion of S, such as a” and a'a’a, which both facilitate the trans-
ition between the states |Ey) and |E, + #iw), but each with a different
phase factor in the final state.

Interestingly, because of the practically constant coupling matrix
elements between adjacent levels (the ‘equal Rabi’ case'), the occu-
pation probability of the Nth photon sideband can be described by a
very simple analytical expression in the form of the Nth-order Bessel
function of the first kind>®, that is, [(E, = Nfio|S|Eo)|* = |In(2/g])|*. In
a spatial representation, these transitions arise from a sinusoidal phase
modulation of the wavefunction traversing the optical near-field.
Accordingly, such sideband populations are also commonly encoun-
tered in other physical systems using phase modulation, for example,
in acousto-optics®.

Comparing the experimental field-dependent electron populations
with the analytical result (Fig. 2b), an excellent agreement is found
both in the location and amplitudes of the respective occupation
minima/maxima. The entire data set is described with a single Rabi
phase 2|g| =F,c X 98 V™! nm linearly increasing with the incident
optical field strength F;,,, yielding a quantitative measure of the trans-
ition matrix element. As detailed in the Methods section, incomplete
modulation of the Rabi oscillations at higher fields is caused by the
finite spatial and temporal electron pulse widths within the optical
near-field. Besides the predicted population oscillations, the character-
istic low-field multiphoton limit of the electron-light interaction is
also experimentally regained (slopes of 2N in the field in a double-
logarithmic plot, see inset of Fig. 2b). Larger incident fields promi-
nently transfer the electron distribution to the outer spectral lobes,
creating a well-defined cutoff around |E — Ey| = 2|g|hw, equal to the
maximum classical energy transfer. Thus, as in other instances of
electrons driven by intense optical near-fields'>'*", the interaction
energy is governed directly by the field amplitude instead of the pon-
deromotive energy.

This periodic phase (and correspondingly momentum) modulation
of the electron wavefunction has important consequences for its sub-
sequent evolution in free propagation. Generally, momentum modu-
lation of classical states in particle accelerators is used for bunch
compression”, and an optical variant of this principle was recently
proposed using ponderomotive forces acting on classical point part-
icles™. However, the present conditions with electronic coherence times
exceeding the optical period necessitate a quantum mechanical descrip-
tion of bunch reshaping. Figure 3a displays a few cycles of the simulated
electron density in a periodically phase-modulated wavepacket as a
function of the propagation distance and the arrival time at this distance
relative to the centre of the pulse. Specifically, the phased superposition
of momentum states reshapes into a high-contrast train of attosecond
pulses at a well-defined distance downstream from the interaction
region. For typical coupling constants achieved in the experiments,
we obtain a temporal focusing into a train of pulses only about 80as
long, at a distance of 1.8 mm behind the sample. Further dispersion
spreads the distribution corresponding to its momentum content, with
the possibility of revivals. Note that a spatial optical equivalent of this
generation of attosecond spikes is given by Fresnel diffraction at a
sinusoidal phase grating into a near-field fringe pattern®, and also that
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an early theoretical scheme for subfemtosecond optical pulse generation
relied on frequency modulation and subsequent reshaping™.

The physical origin of this electron pulse compression can be illu-
strated using a phase space representation of the quantum state in the
form of a Wigner function. This function is a quantum mechanical
analogue of a phase space density, which, however, can also take nega-
tive values for non-classical states®. Figure 3b displays the Wigner
function of one period of a propagated state at the temporal focus
and for a typical momentum distribution (projection in Fig. 3c). In
this plane, free propagation of the initially sinusoidal momentum
modulation has sheared the phase space distribution to a situation
where a highly localized projection onto the position axis, that is,
arrival time, is formed (Fig. 3d). In fact, the generation of this attose-
cond electron pulse train is very robust with respect to variations of the
specific temporal and energetic structure of the initial electron pulse
(see Methods). The practically usable focal distances (a few milli-
metres) render this scheme directly applicable in electron microscopy
or spectroscopy studies with attosecond precision, a domain at present
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Figure 3 | Formation of an attosecond electron pulse train. a, Development
of a periodically modulated electron pulse structure (normalized electron
density is colour coded) as a function of the propagation distance after the near-
field interaction (numerical simulation for |g| = 5.7). Free propagation causes
a temporal focusing into a train of attosecond spikes (red) with a period of

T = 2.55fs (optical period). b, Phase space (Wigner) representation of one
period of the light-modulated electron quantum state at the temporal focus
position (propagation distance of 1.8 mm in a). Note that time and space
variables for the swift electron pulse can be used equivalently via x = vt (v is
mean electron velocity). ¢, Momentum projection of Wigner function
exhibiting spectral modulations as observed in the experiments, displayed in
units of transferred momentum quanta (average momentum subtracted).

d, Central part of spatial projection, expressed in terms of electron arrival time
in laboratory frame. A peak with a duration of only 82 as (FWHM) is produced.
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only accessible by attosecond light pulses’. Specifically, the temporal
electron comb will enable the phase-resolved investigation of coherent
sample excitations, thus tracing structural or electronic changes car-
rying optical phase information.

In conclusion, we have demonstrated the quantum coherent manip-
ulation of free-electron wavefunctions by their interaction with nano-
confined light fields, observing near-perfect correspondence to the
behaviour of a multilevel model Hamiltonian. Thinking beyond a
single-variable state control, near-field interactions are expected to
cause entanglement of longitudinal and transverse momentum com-
ponents, and moreover, Coulomb interactions in a beam crossover
will result in correlations between multiple electrons. Both features
may be crucial for employing free electrons in quantum information
technology'. Perhaps surprisingly, the generation of an attosecond
electron train is a direct and natural consequence of this optical
phase-modulation. We anticipate various applications of this concept
in imaging and spectroscopy—for example, in the phase-resolved
detection of coherent, resonantly driven polarizations in solid state
materials—thus opening up the study of attosecond phenomena in
electron microscopy.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS

Ultrafast TEM and experimental setup. We have recently constructed an ultra-
fast TEM (UTEM) to enable a variety of laser-pump/electron-probe imaging
schemes with high spatial resolution. The microscope is based on a commercial
Schottky field emission TEM (JEOL JEM-2100F), which we modified to allow for
both optical sample excitation and laser-driven electron pulse generation in the
gun, as shown in Extended Data Fig. 1. In contrast to previous implementations of
time-resolved TEM, our instrument features a nanotip photocathode as the source
of ultrashort electron pulses. Compared to planar emitters, such needle cathodes
provide reduced electron beam emittance, which is particularly useful for nanos-
cale probing and spectroscopy. In the present experiments, we employ electron
pulses with a repetition rate of 250 kHz, which are induced via two-photon photo-
emission by irradiating the apex of a tungsten field emission cathode (apex radius
of curvature of about 120 nm) with ultrashort laser pulses (400 nm central wave-
length, 50fs pulse duration, 4.1nJ pulse energy, 25GW cm™ > incident peak
intensity). The emitter tip is operated at room temperature and with an electro-
static extraction field of 0.1 Vam™".

Atan electron energy of 120 keV, the beam is focused to a spot diameter of about
15nm, with a typical electron pulse duration of 700-900 fs (full-width at half-
maximum, FWHM) at the position of the sample (characterized by electron-laser
cross-correlation, see below). This pulse duration is at present governed by velocity
dispersion of electrons with different initial kinetic energies after photoemission,
which, however, is not a limitation for the measurements described here. While
pulses may contain many electrons, all experiments reported here were acquired
with less than one electron per pulse at the sample position (single-electron mode),
thus avoiding potential space charge influences.

The laser pulse exciting the optical near-field (central wavelength of 800 nm,
pulse energy of up to 60 nJ) is stretched by dispersion in glass to a pulse duration
of 3.4ps and focused to a spot size of ~50pum, yielding peak intensities of
133 GW cm ™2 at the largest applied fluence. The excitation with a laser pulse of
a duration much longer than that of the electron pulse allows for the observation
of coherent population oscillations (see section ‘Numerical calculations” below).

After interaction with the optical near-field, the electron pulse is imaged (mag-
nification of 25,000) into an electron energy-loss spectrometer (EELS) to analyse
its kinetic energy distribution (spectrometer entrance aperture of 3 mm, energy
dispersion of 0.05 eV per detector channel).

Modulated electron spectra are observed at any electron probe position

within the optical near-field. However, the quality of the spectral modulation
and full extinction of individual orders crucially depends on the transverse
homogeneity of the near-field on the scale of the electron beam diameter (see
section ‘Numerical calculations’ below). For a nanoscopic tip, the optical near-
fields are only slowly varying along its shaft. Therefore, we chose a position of
the electron focus several micrometres away from the tip apex (see Extended
Data Fig. 2).
Temporal characterization of electron pulses. In UTEM, the duration of the
electron pulses is governed mainly by Coulomb repulsion and dispersive broad-
ening within the electron gun and subsequent electron optics. The resulting elec-
tron pulse structure in the sample plane can be quantitatively characterized
employing inelastic near-field electron scattering®*>**, as discussed in the main
text. However, to this end, and in contrast to the experimental conditions
described in the previous section, laser pulses of a duration (here 50 fs) much
shorter than the electron pulse duration should be used in an electron/near-field
cross-correlation®.

Extended Data Fig. 3a displays electron energy spectra as a function of the
temporal delay between the optical excitation and the electron pulse arrival, sub-
tracting the electron spectrum in the absence of near-field excitation. Therefore,
the central blue feature corresponds to the reduction of the zero-loss peak due to
scattering of electrons into multiple photon sidebands (red stripes). The width of
these features (Extended Data Fig. 3b) and their tilt in the energy-time diagram
(inset) provide measures of the electron pulse duration and chirp, respectively.
Here, we obtain a cross-correlation with a FWHM of 800 fs (standard deviation of
340 fs) and a chirp of ~760fseV ™" for an initial energy spread of 1.3 eV. In the
experiments presented in the main text, electron pulses with a narrower energy
spread of 0.7eV were achieved. For the much shorter near-field excitation
employed here, the scattering signal is linear in the momentary density of electrons
within the pulse. Therefore, we can extract an energy-time representation of the
electron pulse by superimposing all tilted sidebands (Extended Data Fig. 3c).
Finally, we emphasize that temporally stretching the near-field excitation to more
than 3 ps in the experiments ensures that it lasts much longer than the electron
pulse duration and, therefore, provides for a nearly homogeneous scattering
amplitude throughout the electron pulse.

Data analysis and drift correction. In order to obtain high quality electron
spectra at a fixed sample location for varying driving field strengths, it has to be

ensured that the laser-induced sample displacement, for example, by thermal
expansion, is compensated for. This was achieved by first characterizing the
fluence-dependent sample shift in imaging mode (observed up to 150 nm) and
by automated electron beam repositioning between experimental runs. In addi-
tion, slow residual drifts (up to 20 nm, see Extended Data Fig. 2a) were cor-
rected for by continuous line scans perpendicular to the gold surface and using
the strength of the bulk plasmon band to identify the beam-surface distance. In
the recorded spectra, energy losses due to bulk plasmon excitation generate a
weak and spectrally broad band at energies above 15eV (ref. 36), which is only
present when the electron beam is placed in close proximity to the tip so that
the outer tail of the electron focal spot grazes the tip surface. The plasmon
contribution is well-separated from the main spectral features and can be easily
subtracted from the spectra. Specifically, we identify the sideband populations
by adopting a global fit function containing pseudo-Voigt profiles V,,(E) for the
zero-loss peak and all photon sidebands (using symmetric amplitudes in *|N]).
The plasmon peak at a loss energy E, was described by an asymmetric
Gaussian Gp,(E):

P(E):GPI(E_EP1)+N:i“a\N\Vp(E‘i‘th) (1)

Extended Data Fig. 4 shows a typical electron spectrum together with the fitted
function. Note that an energetic shift of the sideband comb relative to the zero-
loss peak due to electron chirp is absent in the case of a long excitation pulse
relative to the electron pulse duration and does not have to be included in the
fit. An evaluation of the strength of the plasmon band as a function of beam-
surface distance allows for a positioning accuracy of £5nm.

Materials. The nanostructure employed in this work was prepared from a thin
gold wire (diameter 250 pm) which was subjected to thermal annealing in vacuum
(800 °C, 12 h) to increase crystallinity and reduce surface roughness®. A sharp tip
(100 nm apex radius) was formed by electrochemical etching in aqueous hydro-
chloric acid (37%)*. Afterwards, the conical part of the tip (length ~50 um) was
cut by focused ion beam milling, transferred to a silicon frame and attached by ion-
beam deposited platinum.

Quantum description using ladder operators. The interaction of electrons tra-
versing an optical near-field has been theoretically treated several times in the
past, usually by either direct integration of the time-dependent Schrodinger
equation® or using a Green’s function formalism®*. The relation of this stimu-
lated process to the spontaneous mechanisms observed by electron energy-loss
spectroscopy and cathodoluminescence is discussed in ref. 39. Furthermore, it
was also shown that a non-relativistic approach is sufficient as long as the rela-
tivistically correct electron dispersion (velocity as a function of energy) is used in
the final result*. Here, we present an alternative derivation of inelastic near-field
scattering probabilities using ladder operators, which allows for a succinct
description.

The raising and lowering operators. Electrons in a time-harmonic electromagnetic
field can experience energy loss or gain in multiples of the photon energy /i,
where  is the frequency of the field. This allows us to treat the problem as a
multilevel quantum system. Within the Schrodinger picture, the free-electron
Hamiltonian Hy, does not depend on time, while the wavefunction |y()) of the
electron is time-dependent. Thus, the total Hamiltonian for the interaction with
the electromagnetic field in the velocity gauge is

e
H=Hy+ - pA )

where A is the space- and time-dependent vector potential, and p, e and m are
the electron momentum, charge and mass, respectively. For a time-harmonic
vector potential, a natural basis set is composed of plane wave states |N) offset
from the initial energy E, by an integer multiple N of the photon energy, where
each state |N) is an eigenstate of the unperturbed Hamiltonian Hy:
Hy|N) = (Ey + Nhw)|N). Thus, |0) is the initial state, and |N) corresponds to
the state with |N| absorbed/emitted quanta. The time-harmonic interaction
Hamiltonian causes transitions between these basis states. In particular, the
matrix elements between adjacent states of the form (N + 1|5 pA|N) will lead
to considerable transition probabilities. In contrast, the coupling between states
separated by more than one photon energy causes transition amplitudes rapidly
oscillating in time (at multiple frequencies of w), which prevents direct multi-
photon transitions. (Note that multiphoton transitions will become possible by
multiple actions of the field.)

In order to compute the coupling between neighbouring states, let us consider
for simplicity a one-dimensional model with the time-harmonic vector potential
A = F(z)sin(wt)/w, where F(z) is the spatial distribution of the electric field ampli-
tude. To obtain the matrix elements (N + 1| £ pA|N), we use |N) in a plane wave
form L™ exp(ikyz) in a finite spatial interval of length L, where fiky is the electron
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momentum. In this representation, the matrix elements can be readily computed,
for instance

L2
2
<N+1‘%pA‘N> = @sin(wt), g= % J F(z) exp(—idkz)dz (3)
-2

where vy is the electron velocity in the state |N), and Ak = w/vy is the electron
momentum change (divided by #). The dimensionless coupling constant g
expressed in terms of a Fourier amplitude in equation (3) was introduced in
a similar form as used in ref. 6. Physically, g describes the momentum com-
ponent in the near-field distribution which allows for total energy and
momentum conservation in the transition, that is, it represents the momentum
change of an electron undergoing an energy transition of /. Regarding the
integration limits in equation (3), at present, it is only important that the
interval length L is larger than the extension of the near-field, as L will cancel
out in the final result. It should be noted that for an initial energy much higher
than the maximum number of absorbed or emitted photons, Ey>>|N|hw, the
coupling matrix elements in equation (3) become practically independent of N,
as does the velocity v~ vy. The presence of a single and universal coupling
constant renders the present quantum system a nearly perfect example of an
equal Rabi multilevel system'. The transitions in this system can be concisely
described by introducing the raising and lowering operators a' and a, respect-
ively, as

IN+1)=a'|N), |N—1)=a|N) (4)

Note that, in contrast to the commonly employed ladder operators of a harmonic
oscillator (which has a coupling constant scaling with v/N), it follows from equa-
tion (4) that a and a" commute: aa” = a’a. The essential parts of the interaction
Hamiltonian then take a bi-diagonal form, which can be represented in the raising
and lowering operators

2hv

pA="(g"a+ga) sin(ot) + O(a"a"; n22) ©)

e
m
The higher order contributions can be neglected in the following, as they lead to
negligible transition probabilities (see below), and terms on the main diagonal are
absent because the spatial integral over the near-field distribution F(2) (the case of
Ak = 0) vanishes.
The S-matrix. To obtain transition probabilities for electrons after passage
through the near-field, it is convenient to switch to the interaction picture.
Here, the lowering and raising operators become time-dependent: a(t), al(o.
In our case, they can be easily expressed in terms of a and a' by the transformation

a(t)= exp(—iwt)a, a'(t)= exp(iot)a’ (6)

and the interaction Hamiltonian turns into
2h B
Hine(t) = TV sin(wt) [exp(—iowt)g"a+ exp(imt)ga'| (7)

where a and a” denote the time-independent lowering and raising operators (see
equation (4)). The temporal evolution of the quantum system can be treated in
terms of a scattering matrix S, defined as a unitary transformation connecting
asymptotic particle states [/(00)) =S|jy(— o0)) before and after the interaction
(for the time-dependence of the electron wavefunction during near-field transit,
see ref. 5). This unitary operator S is given by the time-ordered exponent

0

S=Texp f% J Hi(t)dt (8)
— o0

In the present case, the time-ordering T can be omitted because a(t) and a'(d)
commute. With the choice of a finite support L of the basis states, the range of

integration should in principle be limited to ] . /2‘ , which will cancel out the ratio

v/L appearing in equation (7) for the time-independent contributions. The terms
oscillating at higher frequencies ( [exp(2ict)dt in equation (7) and higher order
contributions from equation (5)) vanish in the limit of large L. This case of large L
(L >v/w) corresponds to the experimental situation, in which the momentum
states are well-resolved with respect to their energy difference /i, and therefore,
the passage to infinity can be carried out without loss of generality:

-
1
7 J Hi(t)dt =

— o0

*a—gat
«% (9)

Thus, the S-matrix in the interaction picture can be finally written as

LETTER

(10)
and interestingly, the scattering matrix takes on the form of a displacement
operator™®.

The transition probabilities. Using the S-matrix, we can compute the probabilities
of the transitions |0) —|N), given by Py =|(N|S|0)|*. For this purpose, we first
split the matrix exponent in equation (10) into a product of two exponents,
exp(ga’ —g"a) = exp(ga’)exp(—g*a). This separation is of course possible
because a and a' commute. Expanding the exponential operators in a Taylor
series, we find

§ = et g

0 g © gm
g g 11
exp(ga’) Z=m 0=2_ Sl (11)
and analogously
X o o *)n . D (kN
Vep(—g'a)= 3 TE o= S 8 v (g
n=0 ° n=0 N

Using equation (10) and the orthogonality relation (N + n|m) = Sx+,, ., We obtain

n+N

<N|S‘O>: Z(;'gn)-&-N _gNZn‘ nli‘N

Comparing this result with the following series expansion for the Bessel function
of the first kind

(13)

=(/2) NZ n! n+/;4\l (14)

we finally obtain
Py=]y(2lg])’ (15)

Therefore, the probability of energy gain or loss is given in the form of Bessel
functions of different order®.

Propagation after interaction and Wigner function. The propagation of the elec-
tron wavefunction after interaction with the optical near-field can be described in
terms of a unitary evolution operator exp(—iHyt/#), where Hy is again the free-
electron Hamiltonian. Let 1/,,(t) be the wavefunction in momentum representation
and p the electron momentum in the laboratory frame. The unitary evolution is
then given by

U (1) =€~ "y, (0)

where E, =cy/ (mc)” + p? is the relativistic energy and m is the electron rest mass.
In practice, the electron momenta p after the interaction are all very close to the
initial (relativistic) electron momentum ymv, where v and y are the initial electron
velocity and the Lorentz contraction factor, respectively. For that reason, it is
convenient to use ‘shifted’ momenta defined as p’ = p — ymv.

During the free propagation, the momentum distribution [1/,(f)|” remains
unchanged because the unitary action only changes phases of the probability
amplitudes 1/,,(0). In contrast to the momentum distribution, the spatial density
distribution will vary in time during the propagation. In a ‘shifted’ laboratory
frame, the spatial representation of the wavefunction is given by the Fourier
transformation

(16)

l//(zfvt,t)zﬁ J (17)

— 0

eipz/h’ l//[,(t)dp

where ,(t) is normalized to unity and z — vt is the shifted spatial coordinate.
Figure 3a in the main text presents a computation of the probability density versus
the arrival time of the wavepacket in a given plane as a function of the propagation
distance between the interaction region and this plane.

The Wigner function of the quantum state (Fig. 3b in the main text) is given by

0

+ | e g

—

W(z—vt,p,t)= (18)

It gives a phase space representation of the quantum state® and illustrates the
propagation-induced pulse compression.

Numerical calculations. In order to elucidate the importance of a spatially narrow
probing beam and a temporally stretched near-field excitation for the observation
of multilevel Rabi oscillations, we performed numerical calculations to quantita-
tively characterize the influence of an incoherent averaging over (temporally and
spatially) varying transition probabilities Py (7 ,t), where ¢ is the electron arrival
time and r_its position vector in the sample plane (perpendicular to the beam
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direction). In a different context, that is, in the description of laser-electron cross-
correlations, similar computations were carried out in refs 5 and 6.

In a simplified geometry, the nanotip is modelled as a straight cylinder of a
radius corresponding to that of the tip at the probing position (r =1 pm), for
which the scattered electric field can be analytically calculated within Mie theory*'.
The field enhancement at the surface of the tip shaft is about 1.4. In the approxi-
mated geometry, we obtain a Fourier amplitude of the scattered field of

£ ~80.3 V~'nm (normalized to the incident field F;,.), in the same order of
rﬁcagnitude as in the experiments, and exponentially depending on the distance
to the surface with a radial decay length of approximately 90 nm.

In Extended Data Fig. 5a, we study the effect of spatial and temporal averaging
on the visibility of the Rabi oscillations by averaging over a disk-shaped beam and a
Gaussian temporal distribution of different widths. The upper and lower graphs
show the influence of a finite probing area and a reduction of the duration of
sample excitation, respectively. Both for larger electron beam widths as well as
shorter laser pulses driving the optical near-field, the Rabi oscillations exhibit
weaker modulation and become substantially damped. Therefore, for the experi-
mental electron pulse width of about 800 fs and a field decay of 90 nm, a probe
radius around 10nm and a near-field duration of 3.4 ps as in the experiments
(black lines) allow for the observation of strongly modulated Rabi oscillations. For
these experimental parameters, the sideband populations closely follow the ana-
lytical Bessel function dependence with minor deviations at higher fields (compare
Extended Data Fig. 5b).

As shown in the main text, the sinusoidal phase modulation of the electron
wavefunction by the interaction with the optical near-field leads to the formation
of an attosecond pulse train after a certain distance of free propagation behind the
interaction region. In the experiments, the electron pulse consists of a partially
coherent ensemble of electrons, and we investigate here the robustness of the
attosecond pulse train generation to an incoherent averaging over different coup-
ling constants g and wavefunction evolutions with fluctuating initial energies. We
find that an initial kinetic energy spread below the photon energy is fully sufficient
for the formation of a clear attosecond pulse structure. Specifically, Extended Data
Fig. 6 presents evolution maps of the electron pulse structure as a function of
propagation distance, incoherently averaging simulations of pure states with an
initial kinetic energy width of 0.1 eV each. In Extended Data Fig. 6a, b, the electron
density is incoherently averaged over a range of kinetic energies AE = 0.7 eV and

2.1eV, respectively. At a range of 0.7 eV, the resulting electron density peak is
practically indistinguishable from the ideal case of a pure state with 0.1 eV width
(solid black line in Extended Data Fig. 6e). With increasing spread of the inco-
herent average, the peak begins to smear out, although its duration in the temporal
focus is not notably enlarged even for a kinetic energy spread of 2.1 eV, three times
larger than in the experiment.

An incoherent average over different coupling constants g experienced by the
electrons within the electron beam area (lower row) has a different effect: for a
small probing radius of 10 nm and a decay length of the coupling constant as used
above, the peak width is not affected, but the depth of the temporal focus is
broadened (Extended Data Fig. 6¢). Increasing the probing radius to 50 nm
(Extended Data Fig. 6d), that is, to a size substantially larger than in the experi-
ment, the amplitude of the side lobes grows to ultimately affect the attosecond
temporal resolution. In conclusion, the stability to perturbations in the coupling
constant and the initial kinetic energy spread demonstrates that attosecond train
generation will be observable under the given experimental conditions.
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Extended Data Figure 1 | Experimental setup. Pulses from an amplified
femtosecond (fs) laser system, at bottom left, are split into two optical beams.
One of them is frequency-doubled in a -barium borate (BBO) crystal and, after
separation from the fundamental beam, focused (lens with numerical aperture
0.015, 50 cm focal length) onto the tungsten needle emitter (W tip) for the
generation of electron probe pulses. The second beam (pump beam) is
temporally stretched, attenuated and focused (lens with numerical aperture
0.014, 20 cm focal length) onto the sample within the TEM (angle of incidence,
55°). Relative timing between the electron probe and laser pump pulse is
controlled by an optical delay stage. Optically-induced changes of the
population of electron momentum states are recorded with an electron energy
spectrometer. See Methods for details.
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Extended Data Figure 2 | Spatial characterization of near-field scattering.
a, Raster scan of the optically-induced electron energy gain and loss prob-
ability, characterized by the spectral cutoff (top panel) and the sideband
populations of the zero loss peak (middle) and the second photon order
(bottom). The field-dependent electron energy spectra shown in Fig. 2 of

the main text were recorded at an x position indicated by the black line at the
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tip surface. A slow sample drift results in a scanning artefact in the y direction
(jagged edge of the tip). For the results reported in the main text, a drift
correction in the y direction was applied (see Methods section ‘Data analysis
and drift correction’). b, TEM image of gold tip. Red rectangle, scanning
area displayed in a. ¢, Electron energy-loss spectra recorded along x = 0 with
varying distance from the tip surface.
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Extended Data Figure 3 | Pulse characterization by electron-photon cross-  as function of time delay (inset, relative shift of photon sidebands with
correlation. a, Differential electron energy-loss spectra as function of time respect to zero loss peak). ¢, Energy- and time-resolved structure of the electron
delay (zero loss peak of width 1.3 eV subtracted; the colour scale shows pulse (the colour scale shows the normalized electron density).

the relative change of spectral density). b, Relative total scattering amplitude
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Extended Data Figure 4 | Evaluation of sideband populations. Example
of electron energy spectrum (black dots) showing a number of photon
sidebands and a weak low-loss plasmon contribution. Lines show fitted
function used to extract sideband populations (blue) and the plasmon band
(orange).
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Extended Data Figure 5 | Influence of spatial and temporal averaging.

a, Effect of electron beam size (top) and laser pulse duration (bottom) on
the visibility of the Rabi oscillations in the order |N| = 1. For increasing
electron beam size and decreasing laser pulse duration, the modulations are
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strongly damped. The black curves correspond to the experimental situation.
b, Occupation probabilities of multiple spectral sidebands. Solid lines, Nth-
order Bessel functions. Dashed lines, numerical calculations accounting

for temporal and spatial averaging in the experiments.
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Extended Data Figure 6 | Robustness of attosecond pulse train generation.
The influence of the electron beam’s initial energy spread and lateral size on
the temporal peak width of the generated pulse train are shown in the upper
and lower rows, respectively. a-d, Evolution of the electron density as a
function of propagation distance after the interaction with the optical near-
field, incoherently averaged over the initial kinetic energy distribution (a, b) or
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the finite probing-area of the electron beam (¢, d). A corresponding line profile
at the propagation distance where the electron density peaks are at their
maximum and form an attosecond pulse train is shown in e and f. For the
experimental parameters used in this work (energy spread AE = 0.7 eV FWHM
and electron beam radius = 10 nm), the peak width remains nearly
unchanged as compared to the ideal (not averaged) case.
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